Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress.

نویسندگان

  • K Misof
  • W J Landis
  • K Klaushofer
  • P Fratzl
چکیده

Osteogenesis imperfecta (OI) is a disease attributable to any of a large number of possible mutations of type I collagen. The disease is clinically characterized in part by highly brittle bone, the cause of this feature being unknown. Recently a mouse model of OI, designated as osteogenesis imperfecta murine (oim), and having a well defined genetic mutation, has been studied and found to contain mineral crystals different in their alignment with respect to collagen and in their size. These observations are consistent with those reported in human OI and the unusual crystal alignment and size undoubtedly contribute to the reduced mechanical properties of OI bone. While the mineral has been investigated, no information is available on the tensile properties of oim collagen. In this study, the mechanical properties of tendon collagen under tension have been examined for homozygous (oim/oim), heterozygous (+/oim), and control (+/+) mice under native wet conditions. The ultimate stress and strain found for oim/oim collagen were only about half the values for control mice. Assuming that prestrained collagen molecules carry most of the tensile load in normal bone while the mineral confers rigidity and compression stability, the reported results suggest that the brittleness of OI bone in the mouse model may be related to a dramatic reduction of the ultimate tensile strain of the collagen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pamidronate Alters the Growth Plate in the Oim Mouse Model for Osteogenesis Imperfecta

Bisphosphonates alleviate bone pain and fractures associated with osteogenesis imperfecta (OI). Using the oim mouse model to simulate variations in OI severity, the effect of pamidronate on bone growth was assessed. Homozygous (oim/oim) and heterozygous (oim/wt) mice from 4 to 12 weeks of age were given pamidronate at 0 mg/kg/wk (control), 1.25 mg/kg/wk (low) and 2.5 mg/kg/wk (high). Humerus an...

متن کامل

Studies of chain substitution caused sub-fibril level differences in stiffness and ultrastructure of wildtype and oim/oim collagen fibers using multifrequency-AFM and molecular modeling.

Molecular alteration in type I collagen, i.e., substituting the α2 chain with α1 chain in tropocollagen molecule, can cause osteogenesis imperfecta (OI), a brittle bone disease, which can be represented by a mouse model (oim/oim). In this work, we use dual-frequency Atomic Force Microscopy (AFM) and incorporated with molecular modeling to quantify the ultrastructure and stiffness of the individ...

متن کامل

Structure–mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model

The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tiss...

متن کامل

Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle x-ray scattering.

We have studied the size and orientation of mineral crystals in cortical bone of oim/oim mice, which are known to produce only alpha 1(I) collagen homotrimers and which may serve as a model for human osteogenesis imperfecta. Long bones (femur and tibia) from young (5 wk old) oim/oim mice and from unaffected heterozygous counterparts were investigated by small-angle x-ray scattering (SAXS), whic...

متن کامل

Myocardial mechanics and collagen structure in the osteogenesis imperfecta murine (oim).

Because the amount and structure of type I collagen are thought to affect the mechanics of ventricular myocardium, we investigated myocardial collagen structure and passive mechanical function in the osteogenesis imperfecta murine (oim) model of pro-alpha2(I) collagen deficiency, previously shown to have less collagen and impaired biomechanics in tendon and bone. Compared with wild-type litterm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 100 1  شماره 

صفحات  -

تاریخ انتشار 1997